Toyota’s Driver Awareness Research Vehicle Shown In Los Angeles

What
if we could reduce driver distraction before ever putting a key in the
ignition? That’s the question Toyota tries to answer with the Driver
Awareness Research Vehicle (DAR-V) that it unveiled at the 2013 Los
Angeles Auto Show.
“At Toyota, our focus is not only on protecting people in case of an
accident, but also on preventing that accident from happening in the
first place,” said Chuck Gulash, Director of Toyota’s Collaborative
Safety Research Center (CSRC). “While the auto industry will never
eliminate every potential driver distraction, we can develop new ways to
keep driver attention and awareness where it needs to be – on the road
ahead.”
Gulash discussed in Los Angeles three specific safety research
initiatives aimed at better leveraging vehicle design and interaction to
help drivers keep their eyes on the road, hands on the wheel and brain
engaged and aware. These included Toyota’s DAR-V new-concept research
vehicle and the funding of two university research programs.
“Cars have become an interaction of multiple screens. Initially,
there was the windscreen, and rear window and the rear and side-view
mirrors,” said Gulash. “We now have multiple gauge clusters, large
information screens and heads-up displays all feeding us information and
competing for our attention.”
Toyota explained the DAR-V was developed in partnership with
Microsoft Research to help reduce driver distractions before the key is
even in the ignition. Utilizing Microsoft technologies such as Kinect,
the interactive systems integrated into the design of the vehicle
display important, highly personalized information on the side window
when the driver approaches the car.
Per Toyota, using a combination of gesture control, voice and the key
fob, drivers can navigate information such as updates on traffic and
the weather, appointments and schedules for the day ahead, and even
route details that might include a gas station if the vehicle is low on
fuel. By addressing these critical daily priorities before even setting
foot in the vehicle, a driver potentially has more mental bandwidth to
focus on driving.
“We need to start thinking of the car and the driver as teammates,
sharing the common goal of saving lives,” said Gulash. “The best
teammates learn from each other. They watch, listen and remember. They
adapt. They communicate. And they assist, as needed. In doing so,
over time, a foundation of trust is built. Together, the teammates are
building a common situational awareness of their driving environment.”
Because the DAR-V system can recognize and differentiate between
individuals, the system might also be used to reduce driver distractions
in other ways, said Toyota. For example, children might play “games”
designed to help them buckle their seatbelts quickly, easing the stress
on parents and helping them focus more of their attention on the road.
Gulash also discussed a study undertaken at MIT’s AgeLab which Toyota
helped to fund. These results were published in a white paper authored
by Dr. Bryan Reimer and Bruce Mehler, of MIT, whose purpose was expand
understanding of the human factors of voice command.
Gulash explained researchers found that the mental demands on drivers
while using voice command were actually lower than expected,
potentially because drivers compensate by slowing down, changing lanes
less frequently or increasing the distance to other vehicles. However,
in a number of the voice interactions studied, the amount of time
drivers took their eyes off the road during voice command tasks was
greater than expected. The situation is often more pronounced among
older drivers, some of whom were found to physically orient their bodies
towards the voice command system’s graphical interface when engaging
with it.
Autonomous Driving Human Factors
The idea of building trust by sharing driving tasks is being taken to
a new level, said Toyota, with a collaborative project between the CSRC
and the Stanford University.
Toyota said using one of the most advanced driving simulators in the
country, researchers are studying how drivers interact with new
automated safety technologies that are increasingly capable of taking
over responsibility for driving the car. The system combines EEG
sensors to track brain activity, skin sensors to measure emotional
arousal and eye-tracking headgear to follow directional glances. The
system can perfectly align what’s happening inside the car, what’s
happening outside the car and what‘s happening inside the driver’s
brain.
The simulator is said to be unique in its ability to instantly shift
from fully automated control to driver in full control to mixed control.
The research will help inform design improvements to automated systems
that will improve how they work in partnership with the driver to
improve safety for everyone.
For example, said Toyota, the project will help to understand how a
driver responds to a sudden “takeover now!” alert compared to less
aggressive commands or explanations. Other issues include studies of how
driver abilities are affected by prolonged periods in fully automated
mode, including potential reduction in reaction times or situational
awareness.
“These are questions that need to be answered”, Gulash concluded,
“not only to help build a product. But also, to build a foundation of
understanding and guidelines for how we proceed with further research
into the human factors of automated vehicles.”